Subject: MATHEMATICS (041)

Duration: 3 Hours
TOTAL MARKS: 80

General Instructions:

1. This question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
2. Section A has $\mathbf{1 8}$ MCQ's and $\mathbf{2}$ Assertion- Reason based questions of 1 mark each.
3. Section B has $\mathbf{5}$ Very Short Answer(VSA) type questions of 2 marks each.
4. Section \mathbf{C} has $\mathbf{6}$ Short Answer (SA) type questions of 3 marks each.
5. Section \mathbf{D} has $\mathbf{4}$ Long Answer (LA) type questions of 5 marks each.
6. Section \mathbf{E} has $\mathbf{3}$ source based/ case based/ passage based integrated units of assessment (4 marks each) with sub parts.

SECTION A

(Multiple Choice Questions- Each question carries 1 mark)

Q1	A is a square matrix such that $A^{2}=I$, where I is the identity matrix, then find the value of $(A-I)^{3}+(A+1)^{3}-7 A$ a) 1 b) -1 c) A d) $-A$	1
Q2	A is a 3×3 invertible matrix, then what will be value of k if $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det} A)^{k}$ a) 1 b) -1 c) 2 d) -2	1
Q3	If \vec{a} is a unit vector such that $(2 \vec{x}-3 \vec{a}) \cdot(2 \vec{x}+3 \vec{a})=91$, then find $\|\vec{x}\|$ a) 4 b) 5 c) 6 d) 10	1
Q4	For what value of k, the following function is continuous at $x=0$? $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c} \frac{1-\cos 4 x}{8 x^{2}} \\ k \text { if } x=0 \end{array} \text { if } x \neq 0\right.$ a) 1 b) -1 c) $1 / 2$ d) $-1 / 2$	1

Q5	Evaluate $\int_{0}^{\pi / 2} \frac{\sin x-\cos x}{1+\sin x \cos x} d x$ a) π b) $\pi / 2$ c) 1 d) 0	1
Q6	Write the integrating factor of the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x$ a) $\tan ^{-1} x$ b) e^{x} c) $e^{\tan ^{-1} x}$ d) $\frac{1}{1+x^{2}}$	1
Q7	The solution set of the inequality $3 x+4 y<4$ is a) an open half plane not containing origin b) an open half plane containing origin c) the whole $X Y$ [plane not containing the line $3 x+4 y=4$ d) the whole XY plane containing the origin	1
Q8	Find λ when the projection of $\vec{a}=\lambda \hat{\imath}+\hat{\jmath}+4 \hat{k}$ on $\vec{b}=2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}$ is 4 units a) -5 b) -4 c) 4 d) 5	1
Q9	If $\int\left(\frac{x-1}{x^{2}}\right) e^{x}=f(x) e^{x}+C$, then write the value of $f(x)$ a) x b) $1 / x$ c) x^{2} d) $x-1$	1
Q 10	If matrix $\mathrm{A}=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]$ and $A^{2}=p A$, write the value of p. a) 2 b) -2 c) 1 d) 4	1
Q11	Let A and B be two events. If $P(A)=0.2, P(B)=0.4$ and $P(A \cup B)=0.5$, then find $P(A / B)$ a) 0 b) $1 / 2$ c) $1 / 4$ d) 1	1
Q12	If A is a square matrix of order 3 such that $\|\operatorname{adj} A\|=81$, then find $\|A\|$. a) ∓ 81 b) ∓ 9 c) ∓ 27 d) ∓ 3	1
Q13	Evaluate $\left\|\begin{array}{ll}\cos 15 & \sin 15 \\ \sin 75 & \cos 75\end{array}\right\|$ a) 0 b) 1 c) -1 d) $1 / 2$	1
Q14	Write the sum of order and degree of the differential equation $\frac{d}{d x}\left\{\left(\frac{d y}{d x}\right)^{3}\right\}=0$ a) 3 b) 4 c) 5 d) 2	1

Q15 | . The corner points of the shaded unbounded fea |
| :--- |
| $(0.6,1.6)$ and $(3,0)$ as shown in the figure. The |
| function $Z=4 \mathrm{x}+6 \mathrm{y}$ occurs at |

(a) $(0.6,1.6)$ only
(b) $(3,0)$ only
(c) $(0.6,1.6)$ and $(3,0)$ only
(d) at every point of the line-segment joining the points $(0.6,1.6)$ and $(3,0)$

Q16	What is $\frac{d y}{d x}$ at $x=2$ if $x-y=k$. a) 0 b) 1 c) -1 d) 2	1
Q17	If $\|\vec{a}\|=4,\|\vec{b}\|=3$ and $\vec{a} . \vec{b}=6 \sqrt{3}$, then value of $\|\vec{a} \times \vec{b}\|$. a) 4 b) 3 c) 6 d) 12	1
Q18	If a line makes angles α, β and γ with the coordinate axes, write the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$ a) 1 b) 2 c) 3 d) 0	1

In Q19 and Q20, a statement of Assertion, A is followed by a statement of Reason, R is given. Mark the correct choice.
Q19
Assertion (A) : $\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)=\frac{2 \pi}{3}$
Reason (R) : $\sin ^{-1}(\sin x)=x$ if $x \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
a) Both A and R are true and R is the correct explanation of A
b) Both A and R are true but R is not the correct explanation of A
c) A is true but R is false
d) A is false but R is true

Q20	Assertion (A) : The angle between the straight lines $\frac{x+1}{2}=\frac{y-2}{5}=\frac{z+3}{4}$ and $\frac{x-1}{1}=\frac{y+2}{2}=\frac{z-3}{-3}$ is 90°. Reason (R): Skew lines are lines in different planes which are parallel and intersecting. a) Both A and R are true and R is the correct explanation of A b) Both A and R are true but R is not the correct explanation of A c) A is true but R is false d) A is false but R is true	1
	SECTION B (2 Marks each)	
Q21	Prove that $\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}=\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}$ OR Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ be defined by $\mathrm{f}(\mathrm{x})=f(x)=\left\{\begin{array}{cl}\frac{n+1}{2}, & \text { if } n \text { is odd } \\ \frac{n}{2}, & \text { if } n \text { is even }\end{array}\right.$. For all $\mathrm{n} \in N$, state whether f is bijective.	2
Q22	A particle moves along the curve $6 y=x^{3}+2$. Find the x-coordinate of the points on the curve at which the y - coordinate is changing 8 times as fast as x - coordinate.	2
Q23	If \vec{a} and \vec{b} are unit vectors, then what is the angle between \vec{a} and \vec{b} if $\vec{a}-\sqrt{2} \vec{b}$ be a unit vector. OR If the lines $\frac{1-x}{3}=\frac{y-2}{2 \lambda}=\frac{2 z-6}{4}$ and $\frac{1-x}{-3 \lambda}=\frac{y-1}{1}=\frac{10 z-12}{-10}$ are perpendicular to each other, find the value of λ	2
Q24	If $y=$ logtan $\left(\frac{\pi}{4}+\frac{x}{2}\right)$, then show that $\frac{d y}{d x}=\sec x$.	2
Q25	Let $\vec{a}=\hat{\imath}+4 \hat{\jmath}+2 \widehat{k}, \quad \vec{b}=3 \hat{\imath}-2 \hat{\jmath}+7 \widehat{k}$, and $\vec{c}=2 \hat{\imath}-\hat{\jmath}+4 \widehat{k}$, find a vector \vec{p} which is perpendicular to both \vec{a} and \vec{b} and $\vec{p} . \vec{c}=18$.	2
	SECTION C (3 Marks each)	
Q26	Evaluate $\int \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$	3
Q27	A problem in Mathematics is given to three students whose chances of solving it are $1 / 2,1 / 3$ and $1 / 4$. If all of them try to solve the problem, what is the probability that (i) problem is solved (ii) exactly one of them will solve.	3

	OR There are 4 cards numbered 1 to 4 , one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean value of X.	
Q28	Evaluate $\int_{-1}^{2}\left\|x^{3}-x\right\| d x$ Evaluate $\int_{\pi / 6}^{\pi / 3} \frac{d x}{1+\sqrt{\cot x}}$	3
Q29	Solve the differential equation $x \frac{d y}{d x} \sin \left(\frac{y}{x}\right)+x-y \sin \left(\frac{y}{x}\right)=0$ OR Solve the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x$	3
Q30	Solve the following Linear Programming Problem graphically: Maximize $Z=400 x+300 y$ subject to the constraints $x+y \leq 200, x \leq 40, x \geq 20$ and $y \geq 0$.	3
Q31	Evaluate $\int \frac{e^{x}}{\sqrt{5-4 e^{x}-e^{2 x}}} d x$	3
	SECTION D (5 Marks each)	
Q32	Make a rough sketch of the region $\left\{(x, y): 0 \leq y \leq x^{2}, 0 \leq y \leq x, 0 \leq x \leq 2\right\}$ and find the area of the region using integration.	5
Q33	Let R be the relation defined on the set of natural numbers N as $\mathrm{R}=\{(x, y): x \in N, y \in N, 2 x+y=41\}$. Find the domain and range of the relation R. Also verify R is reflexive, symmetric or transitive. OR The relation R in the set $\mathrm{N} \times \mathrm{N}$ is defined as follows: For (a, b) and $(c, d) \in N \times N,(a, b) R(c, d)$ iff $a d=b c$. Prove that R is an equivalence relation on $\mathrm{N} \times \mathrm{N}$	5
Q34	Find the shortest distance between the lines $\vec{r}=3 \hat{\imath}+5 \hat{\jmath}+7 \hat{k}+\alpha(\hat{\imath}-2 \hat{\jmath}+\hat{k})$ And $\vec{r}=-\hat{\imath}-\hat{\jmath}-\hat{k}+\beta(7 \hat{\imath}-6 \hat{\jmath}+\hat{k})$. OR	5

| | Find the vector and Cartesian equations of the line passing through the point $(2,1,3)$ and
 perpendicular to the lines $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x}{-3}=\frac{y}{2}=\frac{z}{5}$. |
| :--- | :--- | :--- |
| Q35 | Solve the following system of linear equations using matrix method: |
| $x-y+2 z=7,3 x+4 y-5 z=-5,2 x-y+3 z=12$ | |

| Qnd volume is $8 \mathrm{~m}^{3}$ as shown above. The construction of the tank costs Rs 70 per square m for the | |
| :--- | :--- | :--- |
| base and Rs 45 per square m for sides. | |
| (i)Express making cost C in terms of length of rectangle base. | |
| (ii) If x and y represent the length and breadth of its rectangular base, then find the relation | |
| between the variables. | |
| (iii) Find the value of x so that the cost of construction is minimum. | 1 |
| Case Study -3 | |
| Inan office three employees, Govind, Priyanka and Tasneem, process incoming copies of a | |
| certain forms.Govind processes 50\% of the forms, Priyanka processes 20% and Tasneem the | |
| remaining 30% of the forms. Govind has an error rate of 0.06, Priyanka has an error rate of 0.04 | |
| and Tasneem has an error rate of 0.03. | |

